US009189303B2

a2 United States Patent 10) Patent No.: US 9,189,303 B2
Achanta et al. 45) Date of Patent: Nov. 17,2015
(54) SHADOW QUEUES FOR RECOVERY OF 6,282,565 B1* 82001 Shawetal. ... 709/206
MESSAGES 6,353,834 Bl 3/2002 WOIlg etal.
6,401,136 Bl 6/2002 Britton et al.
. . 6,434,605 Bl 8/2002 Faulkner et al.
(75) Inventors: Phani Gopal V. Achantg, Austln, X 6,496,908 Bl *12/2002 Kamvysselis etal. 711/162
(US); Rajiv Arora, Austin, TX (US) 6,496,942 B1 12/2002 Schoenthal et al.
6,560,617 Bl 5/2003 Winger et_al.
(73) Assignee: International Business Machines 20037/610 5521’(1)(7)5 %: 1%; %882 }{amsga?ll ~~~~~~~~~~~~~~~~~~~~ ;(I)Z; %2‘5‘
O acobs et al.
Corporation, Armonk, NY (US) 2004/0017810 Al* 1/2004 Anderson et al. .. 370/390
. 2004/0081119 Al* 4/2004 Zhongetal. 370/328
(*) Notice: Subject to any disclaimer, the term of this 2006/0143328 Al* 62006 Fleischer etal. c........... 710/19
patent is extended or adjusted under 35
U.S.C. 154(b) by 1751 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 11/463,785 WO WO 01/67263 Al 9/2001
(22) Filed: Aug. 10, 2006 OTHER PUBLICATIONS
. L. “Minimise Fuzzy Backup Costs by Initial Filtering of Eligible Mes-
(65) Prior Publication Data sages”; IBM Research Disclosure #453093; Jan. 2002; p. 79;
US 2008/0115128 A1~ May 15, 2008 Research Disclosure #93.
(51) Int.CL * cited by examiner
GOG6F 3/00 (2006.01)
GOG6F 9/44 (2006.01) Primary Examiner — Timothy A Mudrick
GO6F 9/46 (2006.01) (74) Allorney, Agenl, or Firm — Russell Ng PLLC; Libby Z.
GOG6F 13/00 (2006.01) Toub
GOG6F 9/54 (2006.01)
(52) US.CL (57) ABSTRACT
CPC oo GOGF 9/546 (2013.01) A method, system and computer program product for han-
(58) Field of Classification Search dling an electronic message in a data processing system are
CPC e GOGF 9/546 disclosed. The method comprises receiving an electronic
USPC et 719/314 message and storing the electronic message in a message
See application file for complete search history. store. An address of the electronic message is stored in a
primary queue and the address of the electronic message is
(56) References Cited stored in one or more configured shadow queues. Responsive

U.S. PATENT DOCUMENTS

5,280,580 A * 1/1994 Brooksetal. 709/223
5,454,099 A 9/1995 Myers et al.

5,844,499 A * 12/1998 Min ...oocoovvirviiniiieeninns 340/7.52
6,119,244 A 9/2000 Schoenthal et al.

6,195,709 Bl 2/2001 Giipner et al.

WAS THIS LAST
REFERENCE '7[0 MESSAGE

to successtul completion of one or more tasks related to the
electronic message, the address of the electronic message is
deleted from the associated queue, and responsive to comple-
tion of all tasks related to the electronic message, the elec-
tronic message is deleted from the message store.

21 Claims, 7 Drawing Sheets

U.S. Patent Nov. 17, 2015 Sheet 1 of 7 US 9,189,303 B2

3
DATABASE HOST 168 (,
DATA PROCESSING o 150
SYSTEM L
NETWORK 100 | MESSAGING | 1 32
ADAPTER RAM]| SUBSYSTEM | =
112 120 178 | 132 |7
PROCESSOR |) (102 158
104 ' YT
170 ::116646
STORAGE || - .
106 [142 14642 %
114 126 | 176
L camggouaﬂ R 154
USER /0 ? SYSTEM APPLICATIONS 11360
116 118 149 124 "t

Fig. 1

U.S. Patent Nov. 17, 2015 Sheet 2 of 7 US 9,189,303 B2

126
200 202 \ 204
\ Y 5
148 MSG1T MSG2 e s 0 MSGN
214 /—‘ A
)
CLIENT
INTERACTION
206 208
{ \
1st REFERENCE 1st REFERENCE
2nd REFERENCE =Ny
o8 nth REFERENCE —] 210
N N\.212 130

U.S. Patent Nov. 17, 2015 Sheet 3 of 7 US 9,189,303 B2

300

(302

USER INITIATES
QUEUE CREATED

* (304

ASK USER FOR
SHADOW QUEUE OPTION

(308

USER WANTS ASK LOGICAL NAMES
SHADO\.';I QUEUE OF BOTH QUEUES
CREATE SHADOW QUEUE
REFERENCE
l YS 12

CREATE PRIMARY
QUEUE REFERENCE

314
END

Fig. 3A

U.S. Patent Nov. 17, 2015 Sheet 4 of 7 US 9,189,303 B2

316
{ START)y’

‘ YS 18
INTERACTION WITH USER

* ¢ 320
GENERATE BUSINESS REQUEST

* 322

CONSTRUCT ELECTRONIC
MESSAGE

(324
LOOKUP SERVER QUEUE

¢ (326

ISSUE A STORE MESSAGE;
MESSAGE REQUEST TO
SERVER QUEUE

Cooe)

Fig. 3B

U.S. Patent

Nov. 17,2015 Sheet 5 of 7

330
(START)

' 332

RECEIVE MESSAGE

i (334

STORE IT IN MESSAGE STORE

* (336

STORE MESSAGE
ADDRESS/REFERENCE N
PRIMARY SHADOW QUEUE(S)

* (338

SIGNAL MESSAGE

AVAILABILITY

*340

Fig. 3C

US 9,189,303 B2

U.S. Patent Nov. 17, 2015 Sheet 6 of 7 US 9,189,303 B2

342
START

(344

MDB WORK ON MESSAGE =

IS MESSAGE
AVAILABLE
?

VES (348 (336

INVOKE ON FRIMARY MDB
""ON MESSAGE' QUEUE

ROLLBACK
'}

350

DOES MDB SHOW YES

EXCEPTION ERROR
?

N
0 (352

DELETE MESSAGE REFERENCE
FROM PRIMARY QUEUE

354
END

Fig. 3D

U.S. Patent

Nov. 17,2015 Sheet 7 of 7

356
START

(358

US 9,189,303 B2

WAIT -t

NO

Y
ES Y362

PROCESS

‘ (364

DELETE IT FROM
SHADOW QUEUE

WAS THIS LAST NO

REFERENCE TO MESSAGE
?

YES

f3 68
DELETE FROM MESSAGE
STORE
370
END

Fig. 3E

US 9,189,303 B2

1

SHADOW QUEUES FOR RECOVERY OF
MESSAGES

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to system message
transmission and in particular to message queuing in a data
processing system. Still more particularly, the present inven-
tion relates to a system, method and computer program prod-
uct for implementing shadow queues for recovery of mes-
sages.

2. Description of the Related Art

In distributed computing environments, the performance
of tasks is driven by the routing of incoming messages into
and out of a queue. The handling of queues for performance
frequently damages queue reliability by removing data pre-
maturely. An example of a system driven by incoming events
is present in the Java 2 Enterprise Edition (J2EE).

In such a system, particularly for enterprise applications, a
messaging queue is present, which contains a table of
addresses of messages in a message store and routes mes-
sages to components at an appropriate time based on queuing
rules. Components “listen to the queue” by receiving and
processing incoming messages. Users of Java 2 Enterprise
Edition refer to this mechanism as the java messaging service
(IMS).

In some systems, queuing behavior is specified by pro-
gramming constructs. In Java 2 Enterprise Edition, a mes-
sage-driven bean (MDB) is a construct that specifies the
queuing behavior of messages. Users of such message con-
structs implement an “onMessage” component to the mes-
sage, in which the programmer deals specifically with the
content of the incoming message while the underlying MDB
infrastructure handles the system details, such as message
queueing and routing, and communication details, such as
Domain Name Server behavior, in a user-transparent fashion.

Specifically, incoming messages in a Java 2 Enterprise
Edition environment are received and stored onto a message
database. The lifetime of a message stored in the message
database is equivalent to the receiving MDB’s transaction
lifetime (i.e. until the next asynchronous hop). However the
lifetime of a J2EE application transaction can exceed an
MDB’s transaction lifetime, thus requiring the availability of
actual messages beyond the J2EE transaction lifetime.
Recovery purposes represent a common use of message
stores and therefore consume a significant portion of system
resources.

Systems such as those described above are designed to
provide transactional support. As aresult, if there are multiple
tasks within a transaction, they typically exhibit “all or noth-
ing” behavior. If any of them fails, then all are classified as
having failed together. The “all or nothing” behavior is pro-
vided by the fact that, at the end of any transaction, the system
will check all internal tasks within the transaction. If any
component transaction fails, then all component transactions
are rolled back to their original state.

Normally, transactions end upon a shift to another queue or
another thread, when the originating MDB completes its
invocation and arrives at the back end of the transaction,
ending the transaction. Subsequently, as a part of a message
database cleanup, the message is cleaned from the queue.
However, if the application is an event-driven system with
multiple asynchronous hops, such behavior will lead to pre-
mature message deletion before all the asynchronous hops are
completed, a state which hinders features such as failure
recovery.

10

15

20

25

30

35

40

45

50

55

60

65

2

The prior art method used to circumvent such problems is
to store the incoming message in a separate persistent store (a
database or a persistent queue) which is associated with an
application’s transaction lifetime as opposed to a J2EE com-
ponent’s transaction lifetime. This method excessively con-
sumes system resources and inhibits performance. A solution
is needed that addresses the resource consumption problems
associated with the prior art. What is needed is a system,
method and computer program product for implementing
shadow queues for recovery of messages.

SUMMARY OF THE INVENTION

A method, system and computer program product for han-
dling an electronic message in a data processing system are
disclosed. The method comprises receiving an electronic
message and storing the electronic message in a message
store. An address of the electronic message is stored in a
primary queue and the address of the electronic message is
stored in one or more configured shadow queues. Responsive
to successtul completion of one or more tasks related to the
electronic message, the address of the electronic message is
deleted from the associated queue, and responsive to comple-
tion of all tasks related to the electronic message, the elec-
tronic message is deleted from the message store.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed descriptions of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 illustrates a data processing system in a network
environment, in which a preferred embodiment of the present
method system and computer program product for imple-
menting shadow queues for recovery of messages are imple-
mented;

FIG. 2 depicts a queuing environment in accordance with a
preferred embodiment of the present method system and
computer program product for implementing shadow queues
for recovery of messages;

FIG. 3a is a high-level logical flowchart for a process of
administration for shadow queues for recovery of messages in
accordance with a preferred embodiment of the present
invention;

FIG. 354 is a high-level logical flowchart for a process of
client interaction for shadow queues for recovery of messages
in accordance with a preferred embodiment of the present
invention;

FIG. 3c¢ is a high-level logical flowchart for a process of
server-side message reception for shadow queues for recov-
ery of messages in accordance with a preferred embodiment
of the present invention;

FIG. 3d is a high-level logical flowchart for a process of
server-side message processing using shadow queues for
recovery of messages in accordance with a preferred embodi-
ment of the present invention; and

FIG. 3e is a high-level logical flowchart for a process of
interaction by other application threads for shadow queues for
recovery of messages in accordance with a preferred embodi-
ment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to figures and in particular with refer-
ence to FIG. 1, there is depicted a data processing system in a

US 9,189,303 B2

3

network environment, in which a preferred embodiment of
the present method system and computer program product for
implementing shadow queues for recovery of messages are
implemented. Database host data processing system 100 con-
tains a processing storage unit (e.g., RAM 102) and a proces-
sor 104. Database host data processing system 100 also
includes non-volatile storage 106, such as a hard disk drive or
other direct-access storage device. An Input/Output (/O)
controller 108 provides connectivity to a network 110
through a network adaptor 112 and a connective link, such as
a network connector 114. I/O controller 108 also connects to
user 1/O devices 116 such as a keyboard, a display device, a
mouse, or a printer through wired or wireless link 118, such as
cables or a radio-frequency connection. System interconnect
120 connects processor 104, RAM 102, storage 106, and 1/0
controller 108.

Within RAM 102, database host data processing system
100 stores several items of data and instructions while oper-
ating in accordance with a preferred embodiment of the
present invention. These include a messaging subsystem 132
with messaging functions for routing, storing, and managing
incoming and outgoing messages and instructions, applica-
tions 124 for performing instructions contained in messages,
a message store 126 for storing queued messages, a primary
queue 128, which contains an address table for sorting mes-
sages in message store 126 according to appropriate queuing
rules and a shadow queue 130, which contains a separately-
evolving copy of the address table of primary queue 128 for
restoring the content of primary queue 128 after the occur-
rence of errors. In a preferred embodiment, shadow queue
130 is a secure data structure. The structures referenced above
interact through the transmission of a series of messages,
which will be described below. An operating system 190
controls the interaction of messaging subsystem 132, appli-
cations 124, processor 104, storage 106, and I/O controller
108.

Database host data processing system 100 also interacts
with a client data processing system 134 and remote storage
data processing system 136, which contains a secure remote
shadow queue 138. Remote shadow queue 138 contains a
separately-evolving copy of the address table of primary
queue 128 for restoring the content of primary queue 128 after
the occurrence of errors, through secure communication
using encrypted messages across network 110. The creation
of'shadow queue 130 and remote shadow queue 138 by mes-
saging subsystem 132 results in a redundant set of multiple
secure shadow queues. While the present invention is
depicted with respect to a network 110 and a separately
embodied client data processing system 134 and remote stor-
age data processing system 136 containing secure remote
shadow queue 138, one skilled in the art will quickly realize
that client data processing system 134 and remote storage
data processing system 136 containing secure remote shadow
queue 138 can be implemented as processes running on a
single database host data processing system 100 or on differ-
ent partitions or instances of a database host data processing
system 100 through a virtual network without departing from
the scope of the present invention.

The present invention operates, as described in the flow-
charts below, through the sending and receipt of messages,
which are likewise detailed below. Initially, client data pro-
cessing system 134 sends a request message 140 across net-
work 110 to database host data processing system 100. Once
request message 140 arrives at database host data processing
system 100, message 140 is routed from network adapter 112
to I/O controller 108 and across system interconnect 120 to
RAM 102, where operating system 190 delivers request mes-

10

15

20

25

30

35

40

45

50

55

60

65

4

sage 140 to messaging subsystem 132. Messaging subsystem
132 then routes a store message 142, containing the content of
request message 140, to message store 126.

Message store 126 replies to store message 142 by sending
an address locator 178, containing the address in message
store 126 of the content of store message 142, to messaging
subsystem 132. Messaging subsystem 132 subsequently
sends an enqueue message 144, containing the address in
message store 126 of the content of store message 142 and
rules for queue handling of store message 142, to primary
queue 128. Messaging subsystem 132 then sends a shadow
queue enqueue message 146, containing the address in mes-
sage store 126 of the content of store message 142 and rules
for queue handling of store message 142, to one or more
shadow queues 130. A secure remote shadow queue enqueue
message 148, containing the address in message store 126 of
the content of store message 142 and rules for queue handling
of store message 142, can also be sent across network 110 to
secure remote shadow queue(s) 138 on remote storage data
processing system 136.

When messaging subsystem 132 is required by application
124 to give a message, messaging subsystem 132 sends a next
entry request 150 to primary queue 128. Primary queue 128
responds by sending a next message address 152, containing
an address in message store 126 for the next queued instruc-
tion, to messaging subsystem 132. Operating system 190 next
routes an instruction request 168 to message store 126, to
which message store 126 responds with an instruction content
message 170. Messaging subsystem 132 forwards instruction
content message 154 to applications 124. The message han-
dling component (MDB in J2EE systems) of applications 124
handles the message and calls the necessary steps in order to
perform the relevant task. Upon completion of the compo-
nent’s transaction, messaging subsystem 132 sends a delete
instruction 158 to primary queue 128. The purpose of delete
instruction 158 is to order primary queue 128 to purge the
address sent in next address 152.

Thus, if applications 124 successfully complete all the
tasks associated with instruction content message 154, appli-
cations 124 send a delete instruction 156 to the messaging
subsystem 132. Upon deletion of all addresses from all the
primary and shadow queues, messaging subsystem 132 sends
a delete directive 160 to message store 126.

In the event that applications 124 fail to complete all asso-
ciated tasks, the transaction associated with the failed task is
rolled back. As part of the rollback, the message from the
message store 126 is restored to all the associated shadow
queues thus returning the system back to the state it was in
before receiving the message.

In the event that applications 124 fail to send a delete
message 156 indicating result completion success to messag-
ing subsystem 132, messaging subsystem 132 can send a
shadow retrieval request 162 regarding the address in mes-
sage store 126 of the instruction sent in order message 154, to
shadow queue 130 and receive a shadow restore result 164
containing the address in message store 126 of the instruction
sent in order message 154. Alternatively messaging sub-
system 132 can send a remote shadow retrieval request 172 to
secure remote shadow queue 138 on remote storage data
processing system 136 and receive a remote shadow restore
result 174 the address in message store 126 of the instruction
sent in order message 154. Messaging subsystem 132 can
then send a restore update 166 to primary queue 128 to restore
the address of the application order message 154 for which
result completion success message 156 was never received.

Turning now to FIG. 2, a queuing environment in accor-
dance with a preferred embodiment of the present method,

US 9,189,303 B2

5

system and computer program product for implementing
shadow queues for recovery of messages is depicted. Mes-
sage store 126 contains a series of messages including a first
message 200, a second message 202, and an n” message 204.
Primary queue 128 contains a first reference 206 pointing to
first message 200, which is copied as first reference 208 first
message 200 on shadow queue 130. A second reference 210
on shadow queue 130 points to second message 202, while an
nt reference 212 on primary queue 128 points to n” message
204. The results of client interaction 214 are transmitted as
enqueue message 148.

Referring now to FIG. 3a, a high-level logical flowchart for
aprocess of administration of shadow queues for recovery of
messages in accordance with a preferred embodiment of the
present invention is illustrated. The process starts at step 300
and proceeds to step 302, which illustrates a user initiating
queue creation though an application 124. The process then
moves to step 304. Step 304 illustrates application 124 asking
the user whether the user desires a shadow queue option. The
process next moves to step 306, which depicts application 124
determining whether the user requires a shadow queue 130. In
alternative embodiments within the scope of the present
invention, application 124 will list the creation of a shadow
queue 130 as part of a queue creation command. Ifapplication
124 determines that the user requires a shadow queue 130,
then the process proceeds to step 308. Step 308 illustrates
application 124 asking a user for the logical names of both
primary queue 128 and shadow queue 130. In alternative
embodiments within the scope of the present invention, appli-
cation 124 will pass logical names of primary queue 128 and
shadow queue 130 as part of a queue creation command.

The process then moves to step 310. Step 310 illustrates
messaging subsystem 132 creating a reference for shadow
queue 130. The process then proceeds to step 312, which
depicts operating system 132 creating a reference for primary
queue 128. The process then ends at step 314. Returning to
step 306, if application 124 determines that the user does not
want a shadow queue 130, then the process returns to step
312.

Turning now to FIG. 34, a high-level logical flowchart for
a process of client interaction with shadow queues for recov-
ery of messages in accordance with a preferred embodiment
of'the present invention is presented. The process starts at step
316 and then proceeds to step 318, which illustrates interac-
tion by application 124 with a user. The process next moves to
step 320. Step 320 illustrates application 124 generating a
business request in the form of order message 154. The pro-
cess then moves to step 322. At step 322, application 124
constructs an electronic message in the form of order message
154. The process then moves to step 324, which depicts
messaging subsystem 132 performing a look up operation for
a server queue, such as primary queue 128. The process then
moves to step 326. Step 326 illustrates messaging subsystem
132 issuing a store of a user message request to a server
queue. The process then ends at step 328.

Referring now to FIG. 3¢, a high-level logical flowchart for
aprocess of server-side message reception for shadow queues
for recovery of messages in accordance with a preferred
embodiment of the present invention is illustrated. The pro-
cess starts at step 330. The process next moves to step 332,
which depicts messaging subsystem 132 receiving a message.
The process then moves to step 334. Step 334 illustrates
messaging subsystem 132 storing the message received in
step 332 in message store 126. The process then proceeds to
step 336. Step 336 illustrates messaging subsystem 132 stor-
ing the message received in step 332 with addresses and
references in primary queue 128 and shadow queue 130. The

10

15

20

25

30

35

40

45

50

55

60

65

6

process then proceeds to step 338, which illustrates messag-
ing subsystem 132 signaling message availability. The pro-
cess ends at step 340.

Turning now to FIG. 3d, a high-level logical flowchart for
a process of server-side message processing using shadow
queues for recovery of messages in accordance with a pre-
ferred embodiment of the present invention is presented. The
process starts at step 342 and then moves to step 344, which
depicts messaging subsystem 132 waiting for an available
message. The process then moves to step 346, which illus-
trates messaging subsystem 132 determining whether a mes-
sageis available. [f messaging subsystem 132 determines that
no message is available, then the process returns to step 344.
By contrast, if messaging subsystem 132 determines that a
message is available, then the process proceeds to step 348,
which illustrates messaging subsystem 132 invoking a mes-
sage handling component (MDB in J2EE systems) on a pri-
mary queue 128 for the message. The process then proceeds
to step 350. Step 350 illustrates messaging subsystem 132
determining whether the message handling component
(MDB in J2EE systems) shows an exception or error. If mes-
saging subsystem 132 determines that the message handling
component (MDB in J2EE systems) shows an exception or
error, then the process proceeds to step 356, which illustrates
a roll back step. The process then returns to step 344.

Returning to step 350, if messaging subsystem 132 deter-
mines that the message handling component (MDB in J2EE
systems) does not show an exception or error, then the process
returns to step 352, which illustrates messaging subsystem
132 deleting the message reference from the primary queue
128. The process then ends at step 354.

Referring now to FIG. 3e, a high-level logical flowchart for
a process of interaction by other application threads with
shadow queues for recovery of messages accordance with a
preferred embodiment of the present invention is illustrated.
The process starts at step 356. The process then moves to step
358 which depicts messaging subsystem 132 waiting for
receipt of a new task. The process next proceeds to step 360,
which depicts messaging subsystem 132 determining
whether a new task is ordered. If messaging subsystem 132
determines that no new task is ordered, then the process
returns to step 358. In an alternative embodiment within the
scope of the present invention, application 124 signals the end
of a “task™ associated with a message, which triggers the
messaging subsystem 132 to delete that task from the shadow
queue 130, and, if application 124 deletes the last reference to
the task in shadow queue 130, then application 124 deletes the
message from message store 126. If messaging subsystem
132 determines, however, that a new task has been ordered,
then the process proceeds to step 362, which illustrates mes-
saging subsystem 132 processing the new task. The process
then moves to step 364. Step 364 depicts messaging sub-
system 132 deleting the task from shadow queue 130. The
process then proceeds to step 366.

At step 366, messaging subsystem 132 determines whether
the task deleted in step 364 was the last reference to a par-
ticular message. If messaging subsystem 132 does not deter-
mine that the task processed in step 362 was the last reference
to a particular message, the process returns to step 358. If,
however, messaging subsystem 132 determines that the pro-
cess performed in step 362 was the last reference to a particu-
lar message, then the process proceeds to step 368, which
illustrates messaging subsystem 132 deleting the message
processed in step 362 from message store 126. The process
then ends at step 370.

The present invention provides a system, method and com-
puter program product for implementing shadow queues for

US 9,189,303 B2

7

recovery of messages. This method provides, at lower
resource cost than prior art methods, a stored backup copy of
messages that is a useful reference for failure recovery.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc. Furthermore, the invention can take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
program code for use by or in connection with a computer or
any instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium
can be any apparatus that can contain, store, communicate,
propagate, or transport the program for use by or in connec-
tion with the instruction execution system, apparatus, or
device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk—read only memory (CD-
ROM), compact disk—read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memo~2~ elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide tem-
porary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or 1/O devices {including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

While the invention has been particularly shown as
described with reference to a preferred embodiment, it will be
understood by those skilled in the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention. It is also important to
note that although the present invention has been described in
the context of a fully functional computer system, those
skilled in the art will appreciate that the mechanisms of the
present invention are capable of being distributed as a pro-
gram product in a variety of forms, and that the present
invention applies equally regardless of the particular type of
signal bearing media utilized to actually carry out the distri-
bution. Examples of signal bearing media include, without
limitation, recordable type media such as floppy disks or CD
ROMs and transmission type media such as analog or digital
communication links.

What is claimed is:
1. A method of handling an electronic message in a data
processing system, said method comprising:
in response to receiving an electronic message, the data
processing system:

25

30

35

40

45

50

55

60

65

8

storing said electronic message in a message store in a
location associated with an address;

storing the address of said electronic message in a pri-
mary queue and in a shadow queue separate from said
primary queue, such that the address is held contem-
poraneously in the primary queue and the shadow
queue, wherein the primary queue is maintained
within data storage allocated to a first operating sys-
tem instance;

the data processing system executing first and second

applications, wherein the second application associates
alonger transaction lifetime with the electronic message
than does the first application;

creating said shadow queue in data storage allocated to a

different second operating system instance by one a set
including the first and second applications;
responsive to a completion of the transaction lifetime asso-
ciated with the electronic message by the first applica-
tion, the data processing system deleting said address of
said electronic message from said primary queue; and

thereafter, retaining the address of the electronic message
in the shadow queue and, responsive to completion of
the transaction lifetime associated with the electronic
message by the second application, deleting said address
of said electronic message from said shadow queue.

2. The method of claim 1, further comprising:

responsive to deleting said address of said electronic mes-

sage from said primary queue and deleting said address
of said electronic message from said shadow queue,
deleting said electronic message from said message
store.

3. The method of claim 1, wherein said step of storing said
address of said electronic message in a shadow queue further
comprises storing said address of said electronic message in
multiple redundant shadow queues.

4. The method of claim 1, wherein:

the data processing system is a host data processing sys-

tem; and

the method further comprises the host data processing sys-

tem receiving a request message including the electronic
message from a remote client data processing system.

5. The method of claim 1, and further comprising:

the first application processing the electronic message dur-

ing the transaction lifetime of the first application; and
the second application processing the electronic message
during the transaction lifetime of the second application.

6. The method of claim 1, wherein executing the first appli-
cation includes executing a message driven bean.

7. The method of claim 1, wherein storing the electronic
message in a message store comprises storing the electronic
message in a database.

8. A data processing system that handles an electronic
message for first and second applications, wherein the second
application associates a longer transaction lifetime with the
electronic message than does the first application, said data
processing system comprising:

a processor that executes the first and second applications;

and

data storage coupled to the processor;

program code within the data storage that, when executed

by the processor, causes the data processing system to
perform:
responsive to receiving an electronic message:
storing said electronic message in a message store in
a location associated with an address;
storing an address of said electronic message in a pri-
mary queue and in a shadow queue separate from said

US 9,189,303 B2

9

primary queue, such that the address is held contem-
poraneously in the primary queue and the shadow
queue, wherein the primary queue is maintained
within data storage allocated to a first operating sys-
tem instance;

creating said shadow queue in data storage allocated to a
different second operating system instance by one a
set including the first and second applications;

responsive to completion of the transaction lifetime
associated with the electronic message by the for first
application, deleting said address of said electronic
message from said primary queue; and

thereafter retaining the address of the electronic mes-
sage in the shadow queue and, responsive to comple-
tion the transaction lifetime associated with the elec-
tronic message by the second application, deleting
said address of said electronic message from said
shadow queue.

9. The data processing system of claim 8, wherein the
program code further causes the data processing system to
perform:

responsive to deleting said address of said electronic mes-

sage from said primary queue and deleting said address
of said electronic message from said shadow queue,
deleting said electronic message from said message
store.

10. The data processing system of claim 8, wherein storing
said address of said electronic message in a shadow queue
further comprises storing said address of said electronic mes-
sage in multiple redundant shadow queues.

11. The data processing system of claim 8, wherein:

the data processing system is a host data processing sys-

tem; and

the program code further causes the host data processing

system to perform receiving a request message includ-
ing the electronic message from a remote client data
processing system.

12. The data processing system of claim 8, wherein the
program code further causes the data processing system to
perform:

the first application processing the electronic message dur-

ing the transaction lifetime of the first application; and
the second application processing the electronic message
during the transaction lifetime of the second application.

13. The data processing system of claim 8, wherein the first
application includes a message driven bean.

14. The data processing system of claim 8, wherein the
message store comprises a database.

15. A computer program product for handling an electronic
message in a data processing system, said computer program
product comprising:

a computer-readable storage medium; and

program code stored within the computer-readable storage

medium for causing a data processing system to per-

form:

in response to receiving an electronic message, the data
processing system:

10

15

20

25

30

35

40

45

50

55

10

storing said electronic message in a message store in
a location associated with an address;

storing the address of said electronic message in a
primary queue and in a shadow queue separate
from said primary queue, such that the address is
held contemporaneously in the primary queue and
the shadow queue, wherein the primary queue is
maintained within data storage allocated to a first
operating system instance;

creating said shadow queue in data storage allocated to a

different second operating system instance by one a set
including the first and second applications;

the data processing system executing first and second

applications, wherein the second application associates
alonger transaction lifetime with the electronic message
than does the first application;

responsive to completion of the transaction lifetime asso-

ciated with the electronic message by the second appli-
cation, deleting said address of said electronic message
from said primary queue; and

thereafter, retaining the address of the electronic message

in the shadow queue and, responsive to completion of
the transaction lifetime associated with the electronic
message by the second application, deleting said address
of said electronic message from said shadow queue.

16. The computer program product of claim 15, wherein
the program code further causes the data processing system to
perform:

responsive to deleting said address of said electronic mes-

sage from said primary queue and deleting said address
of said electronic message from said shadow queue,
deleting said electronic message from said message
store.

17. The computer program product of claim 15, wherein
said storing said address of said electronic message in a
shadow queue further comprises storing said address of said
electronic message in multiple redundant shadow queues.

18. The computer program product of claim 15, wherein:

the data processing system is a host data processing sys-

tem; and

the program code further causes the host data processing

system to perform receiving a request message includ-
ing the electronic message from a remote client data
processing system.

19. The computer program product of claim 15, wherein
the program code further causes the data processing system to
perform:

the first application processing the electronic message dur-

ing the transaction lifetime of the first application; and
the second application processing the electronic message
during the transaction lifetime of the second application.

20. The computer program product of claim 15, wherein
the first application includes a message driven bean.

21. The computer program product of claim 15, wherein
the message store comprises a database.

#* #* #* #* #*

